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Estimation of streamwise depth-averaged velocity and boundary shear stress are important requisites for modelling of
river flows associated with flood events. Recently, many methods have emerged to predict these flow variables with
great accuracy, but they provide unsatisfactory results in shear layer regions. This paper presents an improved
methodology to predict depth-averaged velocity and bed shear stress for a straight compound channel flow. An
analytical solution to the depth-integrated turbulent form of the Navier–Stokes equation is obtained. The transverse
shear stress in the mixing region is modelled using an effective eddy viscosity concept that contains horizontal
coherent structures and three-dimensional bottom turbulence. The secondary flow term is modelled by considering
the log-law profile for streamwise velocity and half cosine curve for the transverse velocity component. The analytical
solution is successfully applied to a wide range of experimental compound channels and field cases. The efficacy of
the present solution has been successfully tested by comparing with observed values.

Notation
A cross-sectional area
b semi width of main channel
Cm coefficient of mixing layer
E Nash–Sutcliffe efficiency
f Darcy–Weisbach friction factor
g gravitational acceleration
H main channel flow depth
Hm mean water depth
Id index of agreement
K Karman constant universally adopted as a

characteristic of turbulence
k empirical coefficient, also function of geometry and

roughness
N number of samples
n Manning’s roughness constant
Oi observed values
Oi mean mean of the observed values
Pi predicted values
%Qmc percentage of flow in the main channel
R hydraulic radius
R2 coefficient of determination
S0 bed slope in x-direction
s main channel bank slope
Ū longitudinal velocity
U* shear velocity
Ud depth-averaged longitudinal velocity
Ud

2 lateral gradient of squared velocity
u′ fluctuating velocity in x-direction
V̄ transverse velocity component

Vmax maximum transverse mean velocity
v′ fluctuating velocity in y-direction
w′ fluctuating velocity in z-direction
y lateral dimension
z0 elevation above the bed
α width ratio
β relative flow depth
δ mixing layer width
δ/H non-dimensional mixing layer width
ϑt1 eddy viscosities due to bottom friction
ϑt2 eddy viscosities due to large horizontal coherent

structure
λ1 total eddy viscosity due to bottom turbulence
λ2 total eddy viscosity due to horizontal coherent

structures
λ2s additional coefficients for side slope
ρ density of water
ρŪV̄
� �

d depth-averaged secondary flow
�ρu0v0 turbulent shear stress
τb boundary shear stress
τyx transverse turbulent shear stress
ϕ varying depth of flow

1. Introduction
Rivers consisting of a main channel accompanied by one
or two flood plains are termed compound channels. In such
channels, the hydrodynamic processes are very complex owing
to the variation in geometry and roughness. Estimation of
the transverse distribution of velocity is essential in predicting
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the stage–discharge relationship and boundary shear stress
distribution for overbank flow conditions. A schematic view of
a compound channel is presented in Figure 1. It is well known
that the faster velocity in the main channel is retarded by the
slower moving flood plain, leading to a large transverse
exchange of momentum and reduction in overall conveyance
capacity. In understanding the behaviour of rivers during
the flood, secondary flow effects play an important role in
estimating the lateral distribution of velocity and boundary
shear stress (Knight et al., 2007; Shiono and Knight, 1989).
Some complex flow phenomena are also dominated by a
blend of bed-generated turbulence and free shear turbulence.
So, to account for the additional flow resistance caused
by momentum exchange, it is crucial to have a deep under-
standing of both the secondary flow effect and the turbulence
mechanism.

Turbulence structures of a compound channel have been
studied by Prinos et al. (1985) and Tominaga et al. (1989).
Turbulence models depending upon some empirical constants
have been proposed by Kawahara and Tamai (1988),
Krishnappan and Lau (1986) and Larsson (1986). For cali-
bration of these models, direct measurements of the Reynolds
shear stresses and secondary flow are essential. Accurate evalu-
ation of the secondary flow structures is essential in estimating
the flow parameters, as the strength of these secondary cells
greatly affects the anisotropic turbulence generated in the
corner region and near the free surface of a compound
channel (Knight et al., 2007). Van Prooijen et al. (2005) separ-
ated the half of a compound channel into two uniform zones
and one transverse mixing zone. The lateral mass and momen-
tum exchange in each uniform zone is zero because of the
same bottom level. However, in the mixing zone, a large
amount of mass and momentum transfer occurs between the
main channel and flood plains due to the lateral gradients in
bed level and longitudinal velocity. For accurate determination
of discharge in a river, a proper evaluation of the streamwise

velocity in the mixing region needs to be procured. Transverse
variation of these streamwise velocities has also been studied
by Shiono and Knight (1991), Lambert and Sellin (1996);
Ervine et al. (2000) and Van Prooijen et al. (2005).

The secondary flow phenomena were experimentally investi-
gated by Tominaga and Nezu (1991) and Shiono and Knight
(1991). This secondary flow can be estimated by depth inte-
grating the product of vertical variations of streamwise and
lateral components of velocities, as the secondary circulations
are associated with horizontal flow structures with vertical axes
moving in a downstream direction. In low overbank flow cases,
the turbulence generated by the bottom friction and transverse
shear can be revealed in the form of large horizontal coherent
structures with a vertical axis whose length scale is consider-
ably larger than the flow depth (Uijttewaal and Booij, 2000;
Van Prooijen et al., 2005; Van Prooijen and Uijttewaal, 2002).
Evaluation of these mechanisms turns out to be arduous, as is
evident from the works of Shiono and Knight (1991), Lambert
and Sellin (1996), Ervine et al. (2000) and Van Prooijen et al.
(2005). The applicability of their models with calibration of
empirical constants could not be guaranteed for channels of
other geometries as they have considered one of the mechan-
isms as important but neglected others. Most of the works are
reported for the estimation of depth-averaged velocity but
nothing is mentioned regarding the accurate modelling of the
boundary shear stress distribution, especially at the mixing
region (Ervine et al., 2000; Shiono and Knight, 1991; Van
Prooijen et al., 2005). Looking at these points of view, the
mechanisms accounting for the exchange of momentum and
secondary flow are further described and evaluated in the
present paper. On the basis of the eddy viscosity concept, a
transverse shear stress term is proposed. The secondary flow
term is also quantified considering the vertical distribution of
streamwise and transverse velocity components. Therefore, the
logarithmic distribution of the streamwise velocity component
and half-cosine distribution of the transverse velocity com-
ponent are considered. In this way, the shortfall of the second-
ary flow effect and momentum transfer of a compound
channel is compensated. An analytical solution of the new
form of second-order depth-averaged Navier–Stokes equation
is presented. The accuracy of the solution is confirmed by the
evidence of the results found for both transverse distributions
of depth-averaged velocity and boundary shear stress applied
to many experimental and natural river data sets.

2. Previous study
To compute the transverse profile of depth-averaged velocity
and boundary shear stress in open channel flow, the depth,
and time-averaged momentum equation have been solved by
various investigators – notably by Shiono and Knight (1991),
Ervine et al. (2000) and Van Prooijen et al. (2005). Their inves-
tigations were based on the solution of Reynolds averaged
Navier–Stokes equations. For steady and uniform flow, the
momentum equation combined with the continuity equation is

Turbulent
Exchange

Floodplain

Flood plain

Main channel

Direction of flow

Figure 1. Schematic view of momentum transfers between main
channel and flood plain of a two-stage compound channel
section (Khatua and Patra 2007)
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expressed as

1: ρ
@ŪV̄
@y

þ @ŪW̄
@z

� �
¼ ρgS0 þ @

@y
�ρu0v0
� �þ @

@z
�ρu0w0� �

where ρ is the water density; S0 is the bed slope in the x-
direction; g is the gravitational acceleration; Ū and u′, V̄ and
v′, W and w ′ are the temporal mean velocity components and
their corresponding fluctuations in the x-, y- and z-directions.
The over bar denotes the time-averaged parameters. Based on
the eddy viscosity approach and considering the mean vertical
velocity component w̄ð Þ as negligible, Shiono and Knight
(1991) simplified Equation 1 by integrating it over the flow
depth.

2: ρ
@H ŪV̄
� �

d

@y
¼ ρHgS0 þ @

@y
ρλH2 f

8

� �1=2

Ud
@Ud

@y

" #

� f
8
ρU2

d

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

s2

r

where H is the flow depth; Ud is the depth averaged velocity;
λ is the eddy viscosity coefficient; f is the friction factor; and
s is the side slope. Shiono and Knight (1991) converted this
equation to a second-order linear ordinary differential
equation form. They prescribed the boundary condition in
each domain of the channel and presented analytical solutions
for both constant flow depth domain and variable flow depth
domain. The solution was capable of providing depth-averaged
velocity and boundary shear stress across the channel.
Analysing the flood channel facility experiments, they specified
constant values for the gradient of depth-averaged secondary
flow ρŪV̄

� �
d in the main channel and flood plain. However,

the secondary flow contribution in the mixing layer was
not considered by Shiono and Knight (1991). According to
Tominaga and Nezu (1991) the contribution of secondary flow
is found to be maximal at the mixing regions. Knight et al.
(2007) stated that the boundary shear stress predictions by
Shiono and Knight (1991) do not match with the experimental
results, owing to improper accounting of the secondary current
cell. They therefore improved the boundary shear stress pre-
diction at the bank slope of a simple trapezoidal channel by
dividing half of this channel into four panels and specifying
constant values for secondary flow and roughness parameters
in each panel. For river channels with overbank flow con-
dition, the secondary flow is more significant due to intense
three-dimensional (3D) mixing at junctions; so, the flow mech-
anisms are dominated by the formation of secondary cells
together with the effects of horizontal shear and mass transfer.
Ervine et al. (2000) modelled the secondary flow term ρŪV̄

� �
d

of the Shiono and Knight method (SKM) by assuming
the temporal mean streamwise and transverse velocity
components are fractions of depth-averaged velocity. Their
model (Equation 3) scales with the gradient of the squared

velocity and depends on an empirical coefficient K, which is
further a function of geometry and roughness.

3:
@

@y
ρHKU2

d ¼ ρHgS0 þ @

@y
ρλH2 f

8

� �1=2

Ud
@Ud

@y

" #

� f
8
ρU2

d

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

s2

r

Kordi et al. (2015) showed that the predicted depth-averaged
velocity results found from the model of Ervine et al. (2000)
are poorer when compared with the SKM, particularly in the
interface zone. This is because they assumed a single value
of K for all the sub-compartments. However, the magnitude
of K should be different from zone to zone to describe the
individual 3D mixing process. Again, they modelled the value
of K by taking a small number of data sets. Van Prooijen et al.
(2005) presented a model (Equation 4) for transverse turbulent
shear stress (τyx) in the mixing region of a compound channel.
They incorporated the effects of both horizontal coherent
structures and 3D bottom turbulence in the transverse turbu-
lent shear stress term.

4: τyx ¼ ρ λ

ffiffiffiffi
f
8

r
HUd

@Ud

@y
þHm

H
βδ0ð Þ2 @Ud

@y

����
���� @Ud

@y

" #

where H is the local water depth; Hm is the mean water depth;
β is the proportionality constant; and δ is the mixing layer
width. Considering that the secondary flow has minor impor-
tance on momentum exchange in straight overbank flow cases,
this term was neglected when modelling the depth-averaged
velocity. However, no information is available for modelling of
the bed shear stress. Shiono and Rameshwaran (2015) stated
that the model of Van Prooijen et al. (2005) over-predicts the
bed shear stress considerably in the main channel region.
Shiono and Rameshwaran (2015) proposed a model for trans-
verse turbulent shear stress, adopting three mechanisms of
momentum exchange in compound channels with emergent
vegetation on the flood plain. Their model is expressed as

5: τyx ¼ ρλ

ffiffiffiffi
f
8

r
HUd

@Ud

@y
þ ρβδUd

@Ud

@y
þ ρHgS0 � τbð Þy

H

The first term on the right-hand side of the equation refers
to the momentum exchange due to shear-generated turbulence,
the second term refers to the bed-generated turbulence and the
third term can be attributed to large horizontal eddy. Applying
their model within SKM, they predicted the flow variables of
a compound channel with vegetated flood plains. Without the
new momentum transfer term (the third term), the SKM over-
predicts both the velocity and boundary shear stress in the
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main channel and under-predicts them on the flood plain.
Following the information from earlier investigations – for
example, Tominaga and Nezu (1991) and Rameshwaran and
Shiono (2007) – they stated that the secondary flow might not
be responsible for the difference between the magnitude of
weight component and bed shear stress, occurring outside the
shear layer region. However, they found that the third term of
their model (momentum exchange due to large horizontal
eddy) is simply replaced by the secondary flow concept, as
suggested by Shiono and Knight (1991), and suggested
inclusion of the appropriate secondary flow term in order to
predict the accurate bed shear stress. The applicability of the
method is limited to the case of vegetative compound channels
in the laboratory only.

3. Present study
Shiono and Knight (1991) evaluated the secondary flow term
as the difference between turbulence shear stress and apparent
shear stress. The values for secondary flow ρ ŪV̄

� �
d are plotted

along the cross-channel distance of the compound channel and
found to be of maximum value in the shear layer regions.
Outside the shear layer regions – that is, towards the centre of
the main channel and also towards the flood plain wall – the
secondary flow effect becomes weaker. This may be due to the
infirmity in vertical distribution of transverse velocity in
the regions outside the shear layer. Further, the gradient of the
secondary flow term is found to be very high in the interface
region due to the large difference in velocity between the
sub-sections. The gradient becomes lower towards the main
channel centre and also towards the flood plain walls.
Therefore, secondary flows are more significant in overbank
flows and should be included in the governing equation of a
flow model (Ervine et al., 2000). In this context, a new formu-
lation is proposed for estimating the secondary flow term
ρ ŪV̄
� �

d. To quantify the magnitude of ρ ŪV̄
� �

d in transverse
uniform zones, log law can be used to define the streamwise
velocity distribution Ū

� �
. This has been confirmed from the

measured vertical velocity profile in many experimental chan-
nels including flood channel facility (FCF) straight compound
channels (Knight and Shiono 1990; Wormleaton, 1996; Yang
et al., 2004). This law states that the dimensionless velocity
component – that is, the ratio of temporal mean velocities Ū

� �
to shear velocity (U*) is linearly proportional to the logarith-
mic distance normal to the boundary (z). The universally
recognised log law can be written as follows:

6a:
Ū
U�

¼ 1
K
ln

z
z0

where z0 is the elevation above the bed where the extrapolated
logarithmic velocity profile goes through zero and K is the
Karman constant universally adopted as a characteristic of tur-
bulence. Yang et al. (2004) presented the clear picture about this
log law and found the range of the Karman constant variation

between 2.43 and 2.5 for open channels. Transverse velocity
component V̄

� �
profile of the secondary flow term ρ ŪV̄

� �
d is

inconvenient to determine, as no systematic experimental
measured data are available (Van Prooijen et al., 2005). The pro-
files of the temporal mean transverse velocity component V̄

� �
of FCF channels are also not yet published. As stated by
Wormleaton (1996), the vertical profile of the transverse velocity
component V̄

� �
should satisfy three constraints: (a) zero velocity

at bed; (b) zero shear at water surface; and (c) continuity law for
steady flow. Following the work of Wormleaton (1996), the verti-
cal profile of the transverse velocity component is graphically
presented by Shiono and Knight (1989) and Knight et al.
(2007). They presented the distributions of shear stress by
taking care of secondary flow values in the main channel and
flood plain regions. Although Knight et al. (2007) presented
two measured transverse velocity profiles for simple channel
cases, to the present authors’ knowledge, the magnitudes of
transverse velocity have not been demonstrated in a general
sense for a compound channel case.

To obtain the transverse velocity profile of a compound
channel, the procedure followed by Van Prooijen et al. (2005)
has been adopted here. Figure 2 demonstrates the vertical
distribution of the streamwise velocity component, transverse
velocity component and the product of both distributions.
The depth-averaged term ŪV̄

� �
d of the term ŪV is shown by

the dashed line in this figure. A simple half cosine approxi-
mation is considered for transverse velocity components as

6b: V̄ ¼ �Vmax cos
πz
H

� 	

where Vmax is the maximum transverse mean velocity.
Integrating the product of two velocity profiles as written in
Equations 6a and 6b over the total flow depth provides the
depth-averaged value of secondary flow components. The
shear velocity (U*) is expressed in terms of friction factor ( f )
and depth-averaged velocity (Ud) – that is, U� ¼

ffiffiffiffiffiffiffiffi
f =8

p
Ud. The

term sin(πz/H ) is approximated by Taylor series approximation
by truncating the series after two terms, as the values after
these terms become negligible. The depth-averaged value of
ρ ŪV̄
� �

is now approximated as follows

6c: ρ ŪV̄
� �

d¼ �
ffiffiffiffi
f
8

r
ρ
kH

UdVmax
π2H
18

�H
� �

The transverse velocity component V̄
� �

is closely associated
with the value of depth-averaged longitudinal velocity (Ud) in
complex flow behaviour of a compound section (Ervine et al.,
2000). So, Vmax can be assumed to be a function of Ud. The
value of the lateral gradient of the secondary flow ρ ŪV̄

� �
d is

maximal in the mixing layer region because it scales with the
lateral gradient of squared velocity (Ud

2). For a straight com-
pound channel with rectangular main channel, the transverse
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velocity component V̄
� �

varies within the range of 1–2% of
longitudinal velocity Ū and it is in the range of 2–4% of longi-
tudinal velocity in the trapezoidal main channel (Lorena, 1992).

For high Reynolds numbers in turbulent open channel flow,
the turbulent shear stress �ρu0v0

� �
has been modelled by the

eddy viscosity concept of the Boussinesq approach. The turbu-
lent shear stresses due to bottom friction, together with the
turbulent shear stress generated by the horizontal coherent
structure are contributing to the momentum exchange. The
turbulent shear stress (τyx) is expressed as

6d: τyx ¼ ρðϑt1 þ ϑt2Þ @Ud

@y

ϑt1 and ϑt2 are the eddy viscosities due to bottom friction and
large horizontal coherent structure, respectively. Proper esti-
mations of these eddy viscosities are prerequisite to determine
the accurate quantity of the Reynolds stresses. Both the contri-
butions are quantified as the product of velocity and length
scale to satisfy the dimension of kinematic eddy viscosity. The
eddy viscosity characterising the bottom friction is modelled as
per what has been done by previous researchers. Here, the flow
depth (H ) is taken as the length scale and shear velocity (U*)
is taken as the velocity scale. The contribution of the horizon-
tal coherent structure to turbulent shear stress is caused by
intense mixing at the junction and can be modelled according
to Prandtl’s mixing length theory. To achieve this, the mixing
layer width (δ) is taken as the horizontal length scale and
depth-averaged velocity (Ud) is taken as the velocity scale. The
resultant Reynolds stress is now expressed as follows:

6e: τyx ¼ ρλ1

ffiffiffiffi
f
8

r
HUd

@Ud

@y
þ ρl2

@Ud

@y

� �2

¼ ρ λ1

ffiffiffiffi
f
8

r
HUd

@Ud

@y
þ λ2δUd

@Ud

@y

 !

λ1 and λ2 are the proportionality eddy viscosity constants for
vertical and horizontal length scales. The significance of λ1
and λ2 is discussed later. The width of the mixing layer (δ) is
decided by the mean velocities of the sub-sections (Van
Prooijen et al., 2005); this has been further quantified and
found to be a function of flow depth (Devi and Khatua, 2016).
Following this, the length of the mixing layer (δ) is expressed
in terms of flow depth (H ), as described in Devi and Khatua
(2016) and Devi et al. (2016).

6f: δ ¼ 0:847e2:371 1�ðUfp=UmcÞ½ �n o
H ¼ CmH

where Cm is the non-dimensional coefficient of the mixing
layer equal to 0.847e2.371[1−(Ufp/Umc)]. Umc and Ufp are defined
as the respective depth-averaged mean velocities in the main
channel and in the flood plain regions outside the mixing
layer. Improvement of Cm has been achieved by taking more
data sets of compound channels of different geometry and
flow depths, which are discussed in the next section. So τyx is
now reduced to

6g: τyx ¼ ρ λ1

ffiffiffiffi
f
8

r
HUd

@Ud

@y
þ λ2CmHUd

@Ud

@y

 !

The present objective is to predict both the depth-averaged vel-
ocity and the boundary shear stress for straight compound
channel flow. The solutions to Equation 2 by previous investi-
gators provide a good prediction of depth-averaged velocity

(a)
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0
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Figure 2. Vertical distribution of streamwise velocity, transverse
velocity components and the product ŪV̄ (Van Prooijen et al. 2005)
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distribution but fail to predict the boundary shear distribution
precisely. In many cases, neither of the variables is properly
predicted, especially in the mixing layer region. This shortfall
can be compensated by the use of a secondary flow contri-
bution, Equation 6c, and a Reynolds stress contribution,
Equation 6g. Using the two contributions, the new second-
order linear differential equation becomes

7a:

ρgHS0 �
f
8
ρU2

d þ @

@y
Hρ λ1

ffiffiffiffi
f
8

r
HUd

@Ud

@y
þ λ2CmHUd

@Ud

@y

 !

¼ @

@y
H �

ffiffiffiffi
f
8

r
ρ

kH
UdVmax

π2H
18

�H

� �" #

As described earlier and also found in Shiono and Knight
(1991) and Van Prooijen et al. (2005), the value of V̄ mostly
lies in the range of 2–4% of Ū in the shear regions of FCF
channels. So in the present study, the Vmax value can be
assumed as 4% of depth-averaged velocity (Ud). So, Equation
7a is simplified as

7b:

ρgHS0 �
f
8
ρU2

d þ @

@y
Hρ λ1

ffiffiffiffi
f
8

r
HUd

@Ud

@y
þ λ2CmHUd

@Ud

@y

 !

¼ @

@y
H �

ffiffiffiffi
f
8

r
ρ

25kH
U2
d

π2H
18

�H

� �" #

A sub-section of a compound channel may be considered as a
constant flow depth domain or variable flow depth domain.
Figure 3 shows the constant flow depth domain and linear side
slope domain of a compound channel. Over the main channel
bed and flood plain bed, the depth of flow is constant.
However, over the side slope of the main channel, the depth of
flow varies with lateral distance. The analytical solution to
Equation 7b is now given as

8a:

Ud ¼ C1e
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ4AC

pð Þ=2Að Þyh

þC2e
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ4AC

pð Þ=2Að Þy þD
C


1=2

where A ¼ ρλ1H2=2
ffiffiffiffiffiffiffiffi
f =8

p þ ρλ2CmH2=2

B ¼ 1
25

ρ

k

ffiffiffiffi
f
8

r
π2H
18

�H
� �

C ¼ρ
f
8

D ¼ρgS0H

By applying proper boundary conditions, the unknown coeffi-
cients C1 and C2 for different flow zones can be obtained. The
boundary conditions applied here are

& Udi=Udi+1 continuity of depth-averaged velocity
& (dUd/dy)i= (dUd/dy)i+1 continuity of lateral gradient of the

depth-averaged velocity
& the velocity must be zero at the rigid sidewall (no-slip

condition) of the flood plain Ui=0
& (dUd/dy) = 0 at the middle of the main channel (exclusively

for symmetrical compound channel).

Using the relationship of depth-averaged velocity to
boundary shear stress τb = f/8ρUd

2, the expression for τb is
written as

8b:
τb ¼ ρ

f
8

C1e
�Bð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ4ACÞ

p
=2A

� �
y

�

þC2e
�Bð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2þ4ACÞ

p
=2A

� �
y þD

C

�

In the case of no secondary currents, the term B becomes zero
and the expressions of depth-averaged velocity and boundary
shear stress are presented as

8c:
Ud ¼ C1e

ffiffiffiffiffiffiffi
C=A

p
y þ A2e�

ffiffiffiffiffiffiffi
C=A

p
y þD

C

� �1=2

τb ¼ ρ
f
8

C2e
ffiffiffiffiffiffiffi
C=A

p
y þ A2e�

ffiffiffiffiffiffiffi
C=A

p
y þD

C

� �

Equations 8a–8c are not valid for the linear side slope
domains as the depth of flow (H ) in this region is a function
of lateral dimension – that is, y. The varying depth of flow (ϕ)
in linear side slope regions is expressed as

9: ϕ ¼ H � y� b
s

� �

((y–b)/s,y–b)
φ

H

b (0, b)

H –
y – b

s

Figure 3. Constant flow depth domain and linear side slope
domain
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where H is the main channel flow depth; b is the semi-width of
the main channel; and s is the main channel bank slope.
Equation 7b is now reduced to the following form

10:

ρgϕS0 � f
8
ρ 1þ 1

s2

� �1=2

þ
ffiffiffiffi
f
8

r
ρ

25ks
π2

18
� 1

� �" #
U2

d

þ ρλ1
s2

ffiffiffiffi
f
8

r
þ ρλ2Cm

s2
�

ffiffiffiffi
f
8

r
ρ

25ks
π2

18
� 1

� �" #
ϕ
@U2

d

@ϕ

þ ρλ1
2s2

ffiffiffiffi
f
8

r
þ ρλ2Cm

2s2

 !
ϕ2

@2U2
d

@ϕ2
¼ 0

Equation 10 represents Cauchy’s homogeneous linear equation.
Such an equation is reduced to linear differential equations
with constant coefficients. The analytical solution of this
equation is given by

where L ¼ ρλ1=2s2
ffiffiffiffiffiffiffiffi
f =8

p þ ρλ2Cm=2s2

M ¼ ρλ1
s2

ffiffiffiffi
f
8

r
þ ρλ2Cm

s2
�

ffiffiffiffi
f
8

r
ρ

25ks
π2

18
� 1

� �

N ¼� f
8
ρ 1þ 1

s2

� �1=2

þ
ffiffiffiffi
f
8

r
ρ

25ks
π2

18
� 1

� �" #

O ¼ρgS0

The expression of boundary shear stress can be represented by

11b:

τb ¼ ρ
f
8

C3ϕ
L�Mð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þM2�2L Mþ2Nð Þ

p
2L

 

þC4ϕ
L�Mð Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þM2�2L Mþ2Nð Þ

p
2L � O

M þN
ϕ

!

In the case of negligible secondary currents, the depth-averaged
velocity and boundary shear stress can be evaluated by neglect-
ing the second part of the terms M and N. By applying the
above-mentioned boundary conditions, the unknown coeffi-
cients C1, C2, C3 and C4 for different flow zones can be
obtained.

4. Application of the analytical model
The present analytical solution can be applied to a number of
compound channels. For the solution of these Equations 7b
and 10, the proper estimation of flow variables such as mixing
layer coefficients Cm, friction factors of the sub-sections – that
is, fmc and ffp, eddy viscosity coefficients – that is, λ1 and λ2 are
to be determined.

4.1 Estimation of mixing layer coefficient, Cm

Both Equations 7b and 10 contain the coefficient of mixing
layer (Cm), which can be estimated using Equation 6f. For
more practical application, Equation 6f is further refined by
taking a large number of data sets of compound channels.
From the definition of shear layer width (δ) as given by
Van Prooijen et al. (2005), the values of δ have been estimated
for channels with different geometries and flow depths
(Table 1). The ranges of width ratio (α) and relative flow

depths (β) considered are from 2 to 12 and from 0.05 to 0.5,
respectively. The width ratio (α) is defined as the ratio of total
width of the compound channel to the bottom width of the
main channel and relative flow depth (β) is defined as the ratio
of flow depth over the floodplain to that of the main channel.

Non-dimensional mixing layer width (δ/H ) against the mean
velocity ratio of the sub-sections ((Umc−Ufp)/Umc) is plotted
in Figure 4 for all the channels. The best fit between these two
variables has been chosen as an exponential function with a
regression coefficient of 0.80 as

12: δ ¼ 0:733e2:115 1�Ufp=Umcð Þ� 	
H ¼ CmH

The magnitude of the mean velocity ratios between the flood
plain and main channel (Ufp/ Umc) can be simplified from a
proper flow distribution expression. Knight and Demetriou
(1983), Khatua and Patra (2009), Mohanty and Khatua (2014)
and Devi et al. (2016) expressed the percentage of flow in the
sub-sections of compound channels for different ranges of
width ratio. Devi et al. (2016) derived a generalised equation
for estimating the percentage of flow in the main channel (%
Qmc) valid for a large range of width ratio from 2 to 12, which
is demonstrated as

13: %Qmc ¼ 1:715%A0:9
mc

11a: Ud ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3ϕ

L�Mð Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þM2�2L Mþ2Nð Þ

p
2L þ C4ϕ

L�Mð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2þM2�2L Mþ2Nð Þ

p
2L � O

M þN
ϕ

s
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Utilising the above expression of %Qmc, the mean velocity
ratio between the flood plain and main channel (Ufp/ Umc) is
simplified as

14:
Ufp

Umc
¼ 0:924� A0:9A0:1

mc � Amc

Afp

where Amc, Afp and A are the flow area of the main
channel, flood plain and total compound channel,
respectively. Now Equations 12 and 14 are utilised to estimate
the coefficient of mixing layer width Cm of a compound
channel.

4.2 Selection of zonal friction factor
Darcy–Weisbach friction factors for the main channel ( fmc)
and flood plain ( ffp) sub-sections can be obtained from
a relationship depending upon the hydraulic depth of sub-
sections and bottom roughness values in terms of Manning’s
n, as given below (Fernandes et al., 2014).

15: fmc ¼ 8gn2mc

R1=3
mc

and ffp ¼ 8gn2fp
R1=3

fp

where nmc, nfp and Rmc, Rfp are the respective Manning’s n
and hydraulic depth values for the sub-sections.

4.3 Consideration of eddy viscosity coefficients
λ1 and λ2

The eddy viscosity coefficients λ1 and λ2 in the proposed
analytical model characterise the intensity of the Reynolds
shear stress during overbank flow events. Effective total eddy
viscosity due to the bottom turbulence (λ1) and horizontalTa
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Figure 4. Variation of non-dimensional mixing layer width (δ/H )
with the mean velocity ratio of the sub-sections ((Umc−Ufp)/Umc)
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coherent structures (λ2) for both higher flow depth and lower
flow depth cases (β=0.11 and β=0.25) were plotted by Knight
and Shiono (1990). Similarly, individual variations of eddy vis-
cosity due to bottom turbulence and horizontal coherent struc-
tures for both higher and lower flow depths were presented by
Van Prooijen et al. (2005). It is noticed from their results that
there is much variation of eddy viscosity due to the horizontal
coherent structures along the channel perimeter as compared
to bottom turbulence. This confirms the estimation of propor-
tionality coefficients of eddy viscosities – that is, λ1 and λ2.
These values are calibrated using a large number of experimen-
tal data sets from previous investigators and rivers, as given in
Tables 1 and 2.

While applying the present solutions to fit the observed depth-
averaged velocity and boundary shear stress distribution
values, the calibrating parameter λ1 is found to be insensitive
to the solution, confirming the findings from Knight and
Abril (1996). However, the model is found to be sensitive
to λ2 values. The values of λ2 are found to vary from zone
to zone of both FCF channels and compound river sections.
A small deviation of this value produces a large deviation
in boundary shear stress and depth-averaged velocity results.
In the initial test runs, the values of λ1 and λ2 are estimated
and successfully refined until they give best fits with the
observed lateral depth-averaged velocity and boundary shear
stress distribution data. Here, the magnitude of coefficient of
eddy viscosity due to the bottom friction (λ1) is adopted
according to Knight and Abril (1996). The eddy viscosity coef-
ficient for the main channel (λ1mc) has been taken as 0.067
and, for the flood plain (λ1fp), it is adopted as suggested by
Abril and Knight (2004) and Knight (2007). The relationship
is expressed as

16: λ1fp ¼ λ1mc �0:2þ 1:2β�1:44� �

The dimensionless eddy viscosity coefficient λ2 characterises
the momentum exchange intensity due to the horizontal coher-
ent structure (Van Prooijen et al., 2005). Interestingly, for a par-
ticular value of λ2, it can be seen that in the floodplain region
both the transverse velocity and boundary shear stress distri-
bution provide better results. But, in the main channel region
these values vary from flow depth to flow depth and from
channel to channel. Accounting for these values also provides

good results in the shear layer regions of all channels, which
confirms that both the bottom turbulence and horizontal
coherent structure play important roles for flow modelling in
both the shear layer region and outside the shear layer region.
This justifies the need for individual eddy viscosity coefficients
due to a horizontal coherent structure for the main channel
(λ2mc) and for the flood plain (λ2fp).

Studying the variation of λ2mc for a number of channels – for
example, FCF, Rezaei (2006), Yuen (1989), Atabay (2001) and
natural rivers – the dependency of λ2mc on the width ratio, rela-
tive flow depth and friction factor ratio are analysed. From
Figure 5(a), it can be seen that the values of λ2mc follow a
rising trend with width ratio while there is a falling trend with
relative flow depth, as shown in Figure 5(b). To analyse the
effect of roughness on the eddy viscosity coefficients (λ2mc), the
friction factor ratio is taken into consideration, which is
defined as the ratio between the flood plain friction factor ( ffp)
and the main channel friction factor ( fmc). From the depen-
dency shown in Figure 5(c), a falling trend is revealed for λ2mc

with friction factor ratio ( ffp/fmc). It can therefore be clearly
shown that λ2mc is influenced by these three non-dimensional
parameters (α, β and ffp/fmc). Analysing the dependencies from
Figures 5(a)–5(c) and compiling the effects of α, β and ffp/fmc,
the final expression of the eddy viscosity coefficient character-
ising the horizontal coherent structure for the main channel
zone is expressed as

17: λ2mc ¼ 0:0002α1:514β�1:49 ffp
fmc

� ��0:965

The λ2mc values found from the fitting of the depth-averaged
curve and boundary shear stress curves are compared with the
predicted values using Equation 17 and the results are shown
in Figure 6.

The additional coefficients for the side slope – namely, λ2s –

and for the flood plain regions – namely, λ2fp – also need to be
approximated for the present solution. These two values show
little variation when fitted to all experimental data sets; there-
fore, unique values for individual sub-sections can be adopted
for these parameters. The values of these coefficients are taken
as 0.01 for the side slope region (λ2s) and 0.001 for flood plain
region (λ2fp). Utilising these three values – that is, λ2fp, λ2s and

Table 2. Error values of the predictions from the present and existing models for experimental channels

Different model MAE MAPE RMSE R2 E Id

Present approach 0.033 9.86 0.046 0.912 0.98337 0.998736
SKM 0.068 16.22 0.095 0.835 0.867559 0.918174
Knight et al. (2007) 0.042 11.43 0.072 0.886 0.97911 0.994909
Tang and Knight (2008) 0.058 12.25 0.089 0.865 0.974993 0.994187
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λ2mc – the present solution produces precise results of flow
variables for all the experimental channels, including the river
geometries, which is described in the next section.

4.4 Estimation of depth-averaged velocity and
boundary shear stress distribution in
compound channel

The analytical model is first applied to estimate the depth-
averaged velocity and boundary shear stress distribution of
FCF straight channels for both symmetric and asymmetric
flood plains. Then, experimental channels from previous inves-
tigations are utilised as well to examine the applicability of the
model, as shown in Figure 7. The details of the geometrical
and hydraulic parameters of all experimental channels con-
sidered for the present analysis are presented in Table 1.

5. Comparison with existing models
An attempt has been made to compare the present approach
with well-known models of Shiono and Knight (1991), Knight
et al. (2007) and Tang and Knight (2008). FCF-series 1, FCF-
series 6 and NITR-series 1 are taken for the comparison.
Figure 8 demonstrates the comparison of these model results
along with the present approach with their experimental
values.

Further, to demonstrate the significance of the approach,
an error analysis is conducted for all of the estimated Ud

values resulting from all models. This analysis is required
for a deep understanding regarding the strength of the ana-
lytical model developed and to give an insight into the impor-
tance of all input parameters. Using Equation 18, the error
analysis has been carried out for some depth-averaged velocity
distributions by comparing the predictions from the new
approach and from previous approaches, such as Shiono and
Knight (1991), Knight et al. (2007) and Tang and Knight
(2008). This step shows the variance of predicted values
from the observed one for experimental channels. Six types
of errors – mean absolute error (MAE), mean absolute
percentage error (MAPE), root mean square error (RMSE),
Nash–Sutcliffe efficiency (E), index of agreement (Id) and
coefficient of determination (R2) – are considered to evaluate
the performance of all models. The expressions for these six
types of errors are computed as per the following equations
(Das and Khatua, 2018):

18a: MAE ¼ 1
N

X
Oi � Pij j

18b: MAPE ¼ 1
N

X
100 � Oi � Pij j

Oi

y = 0.0004x2.2576

R2 = 0.70

y = 0.0004x–2.2194

R2 = 0.75

y = 0.047x–1.44

R2 = 0.89

0

0.03

0.06

0.09

0.12

0.15

0 5 10 15

λ2mc

λ2mc

λ2mc

Width ratio, α
(a)

0

0.04

0.08

0.12

0 0.1 0.2 0.3 0.4 0.5

Relative flow depth, β
(b)

0

0.03

0.06

0.09

0 5 10 15 20

ffp/fmc

(c)

Figure 5. Dependency of λ2mc on (a) width ratio (α), (b) relative
flow depth (β) and (c) friction factor ratio ( ffp/fmc)

0

0.03

0.06

0.09

0.12

0.15

0 0.03 0.06 0.09 0.12 0.15

Pr
ed

ic
te

d,
 λ

2m
c

Measured, λ2mc

Figure 6. Comparison between predicted λ2mc and measured
λ2mc

10

Water Management Analytical solution for depth-averaged
velocity and boundary shear in a
compound channel
Devi, Das, Khuntia and Khatua



18c: RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X Oi � Pi

Oi

� �2
s

18d: E ¼ 1�
P

Oi � Pið Þ2P
Oi �Oi meanð Þ2
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18e: Id ¼ 1�
PN

i Oi � Pið Þ2PN
i Pi �Oi mean þ Oi �Oi meanj jj jð Þ2

18f: R2 ¼
P

OiPi �
P

Oið Þ PPið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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P

O2
i �

P
Oið Þ2

h i
N
P

P2
i �

P
Pið Þ2

h ir
8>><
>>:

9>>=
>>;

2

where Pi denotes the predicted values; Oi denotes the
observed values; Oi mean is the mean of the observed values;
and N is the number of samples. The error values are
given in Table 2. It is found from Table 2 that the
present method can predict the experimental flow variables
with reasonable accuracy. This is because the present
analytical model incorporates both the turbulent shear stress
and secondary flow contribution of a compound open channel
flow.
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6. Practical application of the present model
to river channels

The new model is also applied to tsix natural river channels
with different cross-sectional geometry and roughness on their
sub-section perimeters. These are the rivers Batu, Senggai,

Senggi B, Severn, Trent and Main. The geometrical, hydraulic
and surface conditions of the rivers are presented in Table 3.
These data sets are extracted from McGahey et al. (2006) and
Hin et al. (2008). Owing to the unavailability of the boundary
shear stress data sets, only predicted depth-averaged velocity
(Ud) results across the river channels are presented and the
comparisons of these with the observed values are shown in
Figure 8.

One more interesting and promising feature has also been
observed, in that the present expression of secondary flow
term depends on the value of the highest lateral velocity com-
ponent Vmax, which is generally 2–4% of the depth-averaged
velocity (Ud). This has been confirmed by many investigators,
including Lorena (1992) and Ervine et al. (2000). This value
has therefore been incorporated for estimating the results of
depth-averaged velocity (Ud) and boundary shear stress (τb)
distribution of all the compound channels, except FCF-series 2
(α=4.2) and series 3 (α=2.2). Good predictions of Ud and τb
are found in the main channel and flood plain regions of
these lower width ratio channels, except at the shear layer
regions of flood plains. A sudden drop in the predicted
values is noticed near the junctions of the shear layer region,
which may be due to inclusion of improper secondary flow
contributions and enormous turbulence. According to the
results of depth-averaged velocity and secondary flow vectors
(for FCF-series 2) shown in Shiono and Knight (1991), it is
confirmed that a higher magnitude of lateral maximum vel-
ocity component Vmax occurs in the shear layer region of
the flood plains. The order of these magnitudes is found to
be about 20% of the longitudinal velocity (Ud) of the
shear layer region. By taking this amount of Vmax values in
the secondary flow term of Equation 6c, a substantial improve-
ment to the depth-averaged velocity and boundary shear stress
distribution are noticed at both the shear layer region and
outside the shear layer regions. So, for FCF-series 2 and FCF-
series 3, the boundary shear stress predictions are improved in
the interface regions by adopting a greater value of Vmax for
the large-scale secondary flow generated in the shear layer
region.

The results demonstrated in Figures 7 and 9 present good
predictions of flow variables for experimental channels
and natural rivers. Table 4 indicates the error analysis of the
present model for the different river channels. It is found that
for river channels, the present model provides an error in
depth-averaged velocity calculation in terms of MAE, MAPE
and RMSE values of less than 0.12, 20% and 0.35, respect-
ively, and also provides a high R2 value in the range of
0.85–0.91.

7. Conclusions
An analytical solution to the depth-integrated turbulent form of
the Navier–Stokes equation is presented. The transverse shear
stress in the mixing region is modelled using an effective eddy
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viscosity concept that contains horizontal coherent structures
and three-dimensional bottom turbulence. A mathematical
expression to estimate the value of the eddy viscosity coefficient

for the main channel characterising the horizontal coherent
structure is developed for channels of different geometry, flow
and roughness conditions. The secondary flow term in the
SKM is also modelled to improve the results for flow variables,
especially in the shear layer region. An analytical solution is
successfully applied to a number of compound channels of
different geometry and flow conditions. The present model pro-
vides better results with minimum error as compared to other
existing models, such as SKM and the models of Knight et al.
(2007) and Tang and Knight (2008), in predicting the depth-
averaged velocity and boundary shear stress in the main
channel, flood plain and side slope of compound channels. The
efficacy of the present model is also tested with natural rivers
and found to be successful in predicting depth-averaged velocity
under different geometry and flow conditions.

Table 3. Geometrical and flow parameters of the river data sets

Natural river

Max.
width,
B: m

Bank
full

width,
b2: m

Bank
full

depth,
h: m

Longitudinal slope, S0
Width
ratio,
α

Flow
depth,
H: m

Surface condition

Main
channel

Flood
plain

Main
channel (nmc) Flood plain (nfp)

Batu (Kuching) 78 5.15 1.55 0.0016 0.0013 4.3 2.243 Large boulder
(0.062)

Long vegetation
(0.25)

Senggai (Kuching) 76 6.75 1.06 0.001 0.001 40 1.587 Erodible soil
(0.025)

Long vegetation
(0.035)

Senggi B (Kuching) 25 5.50 1.30 0.001 0.00085 12 2.13 Erodible soil
(0.082)

Long vegetation
(0.25)

Severn (Montford
Bridge)

135 35 5.75 0.000195 0.000195 8.2 6.92 Grass (0.032) Grass covered
(0.04)

Trent (Yoxall) 80 37.5 2.1 0.001 0.001 3.96 2.535 Gravel (0.032) Grass and bushes
(0.015)

Main (County Antrim) 38 13.60 0.90 0.003 0.003 2.44 1.37 Coarse gravel
(0.032)

Short vegetation
(0.09)
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Figure 9. (a)–(f) Depth-averaged velocity distribution for rivers

Table 4. Error values of the predictions from the present model
for different river channels

River
channels MAE MAPE RMSE R2 E Id

River Batu 0.056 12.62 0.136 0.876 0.936 0.886
River Senggi 0.064 14.63 0.106 0.894 0.925 0.864
River Senggi B 0.086 13.52 0.089 0.912 0.907 0.865
River Severn 0.172 19.56 0.286 0.855 0.922 0.854
River Main 0.106 17.21 0.325 0.864 0.95 0.879
River Trent 0.113 16.78 0.266 0.889 0.903 0.836
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